Established in 1984, Neuchatel-based Centre Suisse d’Electronique et de Microtechnique (CSEM – www.csem.ch) is now one of Switzerland’s top, globally recognized research and development institutes, specializing in precision manufacturing, advanced microelectronics, microtechnology and digitalization. It is a private, not-for-profit organization that designs, produces, assembles and tests novel products as well as solutions for their manufacture for companies in areas as diverse as health, agriculture, energy, aerospace, automotive, electronics and machine tools, while also supporting a strong local watchmaking industry that was instrumental in CSEM’s inception. More than 400 experts are employed, one of whom, Lionel Kiener, was having trouble verifying the accuracy of components additively manufactured (AM) from a wide range of metals including stainless steel, titanium alloy, aluminum, bronze and copper using the layer-by-layer, powder bed, laser fusion method. Using 2D optical metrology methods, it was challenging to inspect the accuracy of freeform surfaces of components in 3D space. Ascertaining how much distortion had been introduced as a result of heat input from the laser to the structure being built and predicting the exact shape of future components was nearly impossible. It was a particular problem with respect to compliant mechanisms that rely on flexibility for their functioning provided by elastic deformation of the constituent parts, as the final 3D geometry and dimensions have to be within drawing tolerance or their operation is compromised. Mr. Kiener commented, “Using our previous 2D measuring system was problematic, as we had no idea if the 3D shapes were meeting the design tolerances. So the overall precision of components could not be assessed and neither could the reproducibility between batches or even from one part to the next.” To gain this metrology knowledge for complex 3D parts, CSEM needed to be able to measure surface shape to a reasonable accuracy. Nikon Metrology (www. nikonmetrology.com) advised that this could be achieved using its ModelMaker H120 non-contact laser scanner mounted on a 7-axis MCAx articulated arm. Several demonstration parts were sent to the supplier to verify that this could be done, after which the equipment was purchased together with Focus Inspection software to compare point cloud data collected from each scan to the nominal CAD model of the AM part or to the build process simulation. Focus Inspection can easily be set up to automatically execute alignment, filtering and meshing as well as analysis and reporting. The software allows manufacturing information to be read directly from the CAD file, so features can be retrieved from the point cloud and their tolerances evaluated, eliminating error-prone and time-consuming manual entry of dimensions and tolerances. Creation of inspection programs by the teach-in method does not require any special skills. Scans of a pair of the mechanisms produced in the same powder bed build process. The surface variation from the CAD model and between the two is highlighted by the color-coded images.
Products and promotions may differ based on your selected region.